Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Mikael K. Retbøll, Eric Wenger* and Anthony C. Willis

Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

Correspondence e-mail: willis@rsc.anu.edu.au

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.049$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A palladium(0) complex of dibenzylideneacetone and a chelating diphosphine

In the crystal structure of $\left[\mathrm{Pd}\left\{\eta^{2}-\mathrm{PhCH}=\mathrm{CHC}(\mathrm{O})-\right.\right.$ $\left.\mathrm{CH}=\mathrm{CHPh}\}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right\}\right]$ or $\left[\mathrm{Pd}\left(\eta^{2}-\mathrm{dba}\right)-\right.$ (dcpe)], where dba is dibenzylideneacetone $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}\right)$ and dcpe is 1,2-bis(dicyclohexylphosphino)ethane $\left(\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{P}_{2}\right)$, the complex has a trigonal-planar coordination and only one double bond of the dba ligand is coordinated to the metal.

Comment

The palladium(0) complexes $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}$ and $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}$, in which the two low-valent metal centres are bridged by three π-coordinated molecules of dibenzylideneacetone (dba) (Ukai et al., 1974), have been extensively used as precursors to prepare a large variety of palladium complexes. The dba fragment is labile and can readily be exchanged for other ligands, while the palladium(0) centre can undergo oxidative addition. The title complex, (II), was obtained as the unexpected major product from the reaction of $o-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{~B}$ (pinacol), (I), with $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}$, in an attempt to prepare the aryl-palladium(II) species (III) (Bennett et al., 2002). Complex (II) has already been prepared and used as a highly reactive reagent for oxidative additions (McGuinness et al., 2001). The fluxionality of the dba ligand has also been studied, and the X-ray structure of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate of (II) has been reported (Reid et al., 2000).

The complex is trigonal planar, with only one double bond of the dba ligand coordinated to the metal in an η^{2} fashion. The double bonds have the same s-trans,s-trans conformation observed in (II) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Reid et al., 2000) and in other palladium(0)-dba complexes (Herrmann et al., 1993). The C atoms of the coordinated double bond (C 1 and C 2) are almost coplanar with Pd1, P1 and P2 (the distances from the PdP_{2} plane are only 0.0601 and $0.0983 \AA$, respectively). As expected, the $\mathrm{C} 1=\mathrm{C} 2$ bond $[1.417$ (3) \AA] is elongated by the coordination, compared to $\mathrm{C} 4=\mathrm{C} 5[1.332$ (3) Å]. The second double bond does not interact with the palladium centre or with neighbouring molecules. The keto group shows some very weak interaction with the dcpe ligand of an adjacent molecule, atoms C18 and C31 of the latter being located 3.371 (3) and

Received 25 March 2002
Accepted 3 May 2002
Online 11 May 2002

Figure 1
The molecular structure of (II), showing 30% probability displacement ellipsoids. For clarity, H atoms have been omitted.
3.547 (3) \AA from atom O1. The $\mathrm{Pd}-\mathrm{P}$ distances $[2.3161$ (6) and $2.2820(6) \AA$ A are similar to those reported for (II) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ [2.307 (1) and 2.283 (1) \AA], analogous [$\mathrm{Pd}\left(\eta^{2}-\mathrm{dba}\right)($ dippe $)$] [dippe is bis(diisopropylphosphino)ethane] (Reid et al., 2000) and other $\left[\operatorname{Pd}\left(\eta^{2}\right.\right.$-alkene $)$ (dippe) $]$ species (Goddard et al., 1995). In the present case, however, dba is not coordinated symmetrically and $\mathrm{Pd}-\mathrm{C} 1$ is longer than $\mathrm{Pd}-\mathrm{C} 2$, whereas the corresponding distances in the solvated complex (II) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are identical; this is probably due to differences in the packing.

Experimental

$\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{dba}(45 \mathrm{mg}, 0.078 \mathrm{mmol})$, dcpe $(35 \mathrm{mg}, 0.083 \mathrm{mmol})$, $o-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{~B}$ (pinacol), (I) ($25 \mathrm{mg}, 0.088 \mathrm{mmol}$), and THF (2 ml) were placed in a Schlenk tube under a nitrogen atmosphere and the mixture was stirred at room temperature for 16 h . Monitoring by ${ }^{31} \mathrm{P}$ NMR spectroscopy showed only traces of the desired product (III) and broad signals at $\delta_{P} 59.4$ and 57.5 p.p.m. due to the title compound (II). The data for (II) were similar to those previously reported (McGuinness et al., 2001; Reid et al., 2000). Single crystals of complex (II) were obtained by layering hexane over the reaction mixture in THF.

Crystal data
$\left[\mathrm{Pd}\left(\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{P}_{2}\right)\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}\right)\right]$
$M_{r}=763.31$
Monoclinic, $P 2_{1} / a$
$a=21.0704$ (2) \AA
$b=8.6065$ (1) \AA
$c=23.6443$ (3) \AA
$\beta=112.4591(6)^{\circ}$
$V=3962.50(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: by integration via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 2000)
$T_{\text {min }}=0.873, T_{\text {max }}=0.941$
77106 measured reflections

Refinement

Refinement on F
$R=0.040$
$w R=0.049$
$S=1.97$
7970 reflections
430 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Pd1-P1	$2.3161(6)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.247(3)$
$\mathrm{Pd} 1-\mathrm{P} 2$	$2.2820(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.417(3)$
$\mathrm{Pd} 1-\mathrm{C} 1$	$2.169(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.482(3)$
$\mathrm{Pd} 1-\mathrm{C} 2$	$2.124(2)$	$\mathrm{C} 1-\mathrm{H} 1$	$0.86(2)$
$\mathrm{P} 1-\mathrm{C} 18$	$1.856(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.447(3)$
$\mathrm{P} 1-\mathrm{C} 20$	$1.853(2)$	$\mathrm{C} 2-\mathrm{H} 2$	$0.96(3)$
$\mathrm{P} 1-\mathrm{C} 26$	$1.847(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.487(3)$
$\mathrm{P} 2-\mathrm{C} 19$	$1.852(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.332(3)$
$\mathrm{P} 2-\mathrm{C} 32$	$1.851(2)$	$\mathrm{C} 5-\mathrm{C} 12$	$1.467(4)$
$\mathrm{P} 2-\mathrm{C} 38$	$1.847(2)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.522(3)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{P} 2$	$88.23(2)$	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 2$	$69.0(1)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{C} 1$	$158.59(7)$	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 6$	$119.3(2)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{C} 2$	$120.07(7)$	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{H} 1$	$104(2)$
$\mathrm{P} 2-\mathrm{Pd} 1-\mathrm{C} 1$	$113.12(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$123.1(2)$
$\mathrm{P} 2-\mathrm{Pd} 1-\mathrm{C} 2$	$151.55(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	$114(2)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{C} 2$	$38.52(9)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1$	$117(2)$
$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 18$	$106.29(8)$	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 1$	$72.4(1)$
$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 20$	$118.31(7)$	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{C} 3$	$98.2(2)$
$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 26$	$119.41(7)$	$\mathrm{Pd} 1-\mathrm{C} 2-\mathrm{H} 2$	$105(2)$
$\mathrm{Pd} 1-\mathrm{P} 2-\mathrm{C} 19$	$106.76(8)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.3(2)$
$\mathrm{Pd} 1-\mathrm{P} 2-\mathrm{C} 32$	$114.03(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	$119(2)$
$\mathrm{Pd} 1-\mathrm{P} 2-\mathrm{C} 38$	$120.89(8)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	$119(2)$

H atoms were included in the refinement at idealized positions. The exceptions were H 1 and H 2 , which were refined positionally.

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992-1997); software used to prepare material for publication: TEXSAN.

EW is grateful to the Australian Research Council for the award of a QEII Research Fellowship.

metal-organic papers

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bennett, M. A., Edwards, A. J., Rae, A. D., Retbøll, M., Wenger, E. \& Willis, A. C. (2002). J. Am. Chem. Soc. Accepted.

Coppens, P. (1970). The Evaluation of Absorption and Extinction in SingleCrystal Structure Analysis. Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Goddard, R., Hopp, G., Jolly, P. W., Krüger, C., Mynott, R. \& Wirtz, C. (1995). J. Organomet. Chem. 486, 163-170.

Herrmann, W. A., Thiel, W. R., Brossmer, C., Öfele, K., Priermeier, T. \& Scherer, W. (1993). J. Organomet. Chem. 461, 51-60.

Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus. Nonius BV, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
McGuinness, D. S., Cavell, K. J., Yates, B. F., Skelton, B. W. \& White, A. H. (2001). J. Am. Chem. Soc. 123, 8317-8328.

Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Reid, S. M., Mague, J. T. \& Fink, M. J. (2000). J. Organomet. Chem. 616, 10-18. Ukai, T., Kawazura, H., Ishii, Y., Bonnet, J. J. \& Ibers, J. A. (1974). J. Organomet. Chem. 65, 253-266

